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Abstract

Underwater video transects have become a common tool for quantitative analysis of
the seafloor. However a major difficulty remains in the accurate determination of the
area surveyed as underwater navigation can be unreliable and image scaling does not
always compensate for distortions due to perspective and topography. Depending on5

the camera setup and available instruments, different methods of surface measurement
are applied which make it difficult to compare data obtained by different vehicles. 3-D
modelling of the seafloor based on 2-D video data and a reference scale can be used to
compute subtransects dimensions. Focussing on the length of the subtransect, the data
obtained from 3-D models created with the software PhotoModeler Scanner are com-10

pared with those determined from underwater acoustic positioning (Ultra-Short Base-
Line – USBL) and bottom tracking (Doppler Velocity Log – DVL). 3-D models building
and scaling was successfully conducted on all three tested setups while the distortion
of the reference scales due to substrate roughness was identified as the main source
of imprecision. Acoustic positioning was generally inaccurate and DVL unreliable on15

rough terrain. Subtransect lengths assessed with PhotoModeler were on average 20 %
longer than those derived from the USBL due to the higher spatial resolution and the in-
clusion of slope. On a high relief wall, DVL and 3-D modelling yielded similar results. At
present, 3-D modelling is the most powerful, albeit the most time-consuming, method
for the accurate determination of video subtransect dimensions.20

1 Introduction

With the advantage of being non-destructive, underwater imagery has become a com-
mon scientific tool for quantitative studies of the seafloor (Solan et al., 2003). This is due
to an improvement of imaging technology (Kocak et al., 2008; Schettini and Corchs,
2010; Bonin et al., 2011) and the development of platforms such as sledges (Shortis25

et al., 2008; Jones et al., 2009), Remotely Operated Vehicles (ROV) (Sedlazeck et al.,
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2009; Karpov et al., 2012; Lindsay et al., 2012; Stierhoff et al., 2012), Autonomous Un-
derwater Vehicles (AUV) (Dowdeswell et al., 2008) and manned submersibles (Cheval-
donné and Jollivet, 1993; Tissot et al., 2007). Although different methods are available
for underwater positioning and image scaling, practical considerations complicate the
processing of the data in a quantitative way.5

The main instruments on these vehicles are video and still cameras employed for
both piloting and analysis. Their orientation plays a major role in data processing. In
the past, the camera axis was set perpendicular to the substrate in order to reduce
distortions in the images and ease scaling (Pilgrim et al., 2000). This strategy is still
applied for estimation of sponge densities (Chu and Leys, 2010), determination of al-10

gal cover below ice (Ambrose et al., 2005), mapping of hydrothermal vents (Cuvelier
et al., 2009) and mosaicking (Garcia et al., 2001; Jerosch et al., 2007). Vertical setups
facilitate the calculation of area for quantitative outputs. Oblique cameras offer a more
natural view making identification and piloting easier (Jones et al., 2009) but scaling
more challenging due to distortions resulting from perspective (Wakefield and Genin,15

1987). The deployment of two cameras, one forward-looking and the other tilted to-
ward the substrate provides an ideal configuration (Karpov et al., 2006; Dolan et al.,
2008; Guinan et al., 2009) however small ROVs often have only a single camera with
reduced tilting capacity (Auster et al., 1989). Nevertheless, several studies have suc-
cessfully exploited videos from cameras oriented 0 to 50 degrees below the horizontal20

for the evaluation of fish densities (Pinkard et al., 2005; Söffker et al., 2011), megaben-
thos abundance (Smith and Hamilton, 1983; Cranmer et al., 2003; Ruhl, 2007; Post
et al., 2011), deep water coral communities (Post et al., 2010), king crab population
size (Smith et al., 2012) and polychaete biomass (Chevaldonné and Jollivet, 1993).

The most widespread sampling strategy in the deployment of underwater cameras is25

the execution of line transects (e.g. Post et al., 2010; Karpov et al., 2012; Smith et al.,
2012), however surveying points regularly distributed on a grid may provide an alter-
native (Chu and Leys, 2010). The general attitude of the vehicle carrying the camera
during a transect is a delicate issue as it can greatly complicate the post-processing
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and hence increase the time invested in analysis (Jones et al., 2009). Usually the pilot
tries to keep the distance to the substrate (Anderson and Yoklavich, 2007), the head-
ing (Ambrose et al., 2005; Cuvelier et al., 2009) and the speed constant (Jones et al.,
2006; Karpov et al., 2012).

Once images have been acquired, the area covered by the complete video transect,5

by subtransects or by single pictures (stills or extracted video frames) has to be deter-
mined in order to be able to assess quantitative data such as abundances and densities
of organisms (Auster et al., 1989).

Usual methods for the scaling of single frames, appropriate for relatively flat habitats,
rely on algorithms based on knowledge of the distance to the substrate and on the10

camera properties to estimate the size of the field of view (e.g. Jerosch et al., 2007;
Guinan et al., 2009; Stierhoff et al., 2012), the use of parallel lasers as references (e.g.
Pinkard et al., 2005; Baker et al., 2012b) or the overlay on the pictures of a perspective
grid as described in Wakefield and Genin (1987) (e.g. Pilgrim et al., 2000; Pinkard
et al., 2005; Smith et al., 2012).15

While working on videos, especially with oblique cameras, the area surveyed can be
calculated by multiplying the centre width of the frames, obtained by one of the scaling
methods previously cited, by the length of the transect or the subtransect (Auster et al.,
1989; Pinkard et al., 2005). This length might be derived from underwater navigation
data (Auster et al., 1989) using an equal area projection in a geographic information20

system software to cipher the distance travelled by the vehicle (Tissot et al., 2007;
Karpov et al., 2006, 2012). The choice of the geographic coordinate system can greatly
impact the results as an inadequate projection would lead to high distortions, especially
in Polar Regions (Sievers and Bennat, 1989). Transect length might also be evaluated
from the speed recorded by a Doppler Velocity Log (DVL) (Pinkard et al., 2005; Snyder,25

2010; Stierhoff et al., 2012) or read directly from the DVL bottom track data (Kocak
et al., 2004).

Other means have been suggested for area determination, e.g. measuring distances
between features on bathymetric charts (Karpov et al., 2006), flying over a known
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length of tether from a weight (Auster et al., 1989), using a weighted wheel bound
to an odometer (Pollio, 1969), deploying a scale (Patterson et al., 2009), frames (Ko-
cak et al., 2004; Amado-Filho et al., 2012) or using objects of known size as scaling
references (Jones et al., 2006, 2009).

To sum up, the complexity of the scaling process depends on the camera system5

employed and the attitude sensors available on the vehicle: it is easier to scale vertical
images with a constant field of view than to calculate the area surveyed by an oblique
camera with variable tilt, altitude and speed (Pinkard et al., 2005).

Relief and substrate roughness can also be an issue as they may affect some instru-
ments such as lasers (Karpov et al., 2006) and DVLs (Pinkard et al., 2005) and result in10

significant differences between the actual distance travelled and the track length com-
puted from the navigation system (Barry and Baxter, 1993). In habitats with a rough
small scale topography, difficulties arise as complex 3-D structures are represented on
2-D images: all visible surfaces are not located at the same distance to the camera nor
viewed from the same angle and hence appear at different scales on the images. None15

of the previously cited scaling methods is able to account for this.
Nowadays, a plethora of underwater videos and pictures are available, from re-

gions all around the globe (e.g. Arctic: Laudien and Orchard, 2012, Antarctic: Gutt
and Starmans, 2001, tropics: Carleton and Done, 1995). They cover all depth ranges
(e.g. photic zone: Parry et al., 2002, continental slope: Baker et al., 2012a, deep sea:20

Chevaldonné and Jollivet, 1993) but represent a very heterogeneous assemblage of
video quality, camera orientation and methods used to calculate the area covered by
the survey. This becomes problematic when spatial or temporal comparisons have to
be realized.

The solution imagined was to create scaled 3-D models of the portion of substrate25

visible in underwater videos from which the dimensions of several subtransects could
be derived. For this purpose PhotoModeler Scanner (EOS Systems) was used: a com-
mercially available 3-D modelling software which triangulates the position of various
points on an object or a surface from pictures representing different views of this
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object. The point cloud obtained can then be scaled by entering one or several known
distances, named here scaling references, to allow measurements between any two
points within the model (Ewins and Pilgrim, 1997). PhotoModeler was initially devel-
oped for land-based work. In an aquatic environment, turbidity and image distortions
might impact the accuracy of the 3-D model (Ewins and Pilgrim, 1997). In addition, ar-5

tificial lighting results in the centre of underwater images being brighter than the edges
(Schettini and Corchs, 2010) so that differences in brightness could also disturb the
process of 3-D reconstruction as the colours are distorted while the camera moves
(Sedlazeck et al., 2009). Ewins and Pilgrim (1997) found the software suitable for un-
derwater work. It has been successfully employed for morphometric analysis on corals10

(Bythell et al., 2001) and mapping of submarine archaeological sites (Green et al.,
2002; Green and Gainsford, 2003). The advantage of this method is that it only bases
on overlapping images and a scale and should thus be applicable to the majority of
the underwater videos readily available. Furthermore, 3-D information can be regained
from 2-D images, this could be especially useful in habitats with a rough small scale15

topography.
Here, we describe the method of subtransect length computation from 3-D mod-

els of the bottom created with PhotoModeler from ROV videos. We also evaluate
this technique on videos showing different qualities and orientation, using two scal-
ing references on two types of substrate. Finally, we compare the subtransects length20

obtained via 3-D modelling with distances estimated from underwater navigation data
and DVL bottom tracking.
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2 Methods

2.1 Video material: sites and setups

Video material from three ROV dives was used to evaluate the feasibility of 3-D mod-
elling with PhotoModeler aiming at subtransect length measurements. The key param-
eters of the sites and setups are summarized in Table 1.5

2.1.1 Dive A

The video data for the first 3-D reconstruction originated from a dive at station
PS69/724-1 (64◦ 54.9′ S, 60◦ 39.15′ W) during the expedition ANT-XXIII/8 of R/V Po-
larstern in January 2007 in the Larsen Ice Shelf area (Antarctic Peninsula). The sub-
strate was relatively flat and composed of mud, sand and pebbles with depths varying10

from 146 to 190 m. The ROV “Cherokee” (sub-Atlantic) owned by the Marum, Univer-
sity of Bremen, Germany was deployed. It was equipped with a forward looking Stan-
dard Definition (SD: 720 576 px, progressive, 25 fps, 25 Mbps) video camera (Tritech
Typhoon PAL), a still camera (Nikon Coolpix 995) and an additional overview camera
(DSPL MultiSeacam color PAL), illuminated by three 500 W LEDs (ROS QLED III). Two15

parallel red lasers (ILEE LDA1000) pointing into the centre of the SD video provided
a reference scale of 20 cm. Additional navigation sensors were available: a mechanical
scanning sonar (Tritech super SeaKing), a pan and tilt unit and an altimeter (Tritech
PA500) and a manipulator (Hydrolek, EH5) for sampling. The underwater position of
the vehicle was not available. The video signal from the SD camera was recorded on20

mini-DV then converted to mpeg2. During the entire dive, the pilot tried to keep the
heading and distance to the seabed constant, following the ship’s track.

2.1.2 Dive B

A second dive was realized at approximately the same site as dive A in March 2011, at
station PS77/253-1 (64◦ 54.82′ S, 60◦ 39.06′ W) during the R/V Polarstern ANT-XXVII/325
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expedition. Depth varied from 143 to 167 m. A ROV (Sperre SubFighter 7500 DC) be-
longing to the Sven Lovén Centre for Marine Sciences, University of Gothenburg, Swe-
den was deployed with one forward looking High Definition (HD: 19 201 080 px, inter-
laced, 50 fps, 50 Mbps) video camera (Sony FCBH11), two standard video cameras for
navigation and umbilical surveillance and one still camera (Canon Powershot G9). Two5

parallel red lasers (Deep Sea Systems) placed 5 cm apart were projected in the centre
of the HD video for scaling. Lighting was ensured by two 200 W HMI lights (Sperre)
and two 250 W halogen lights. The vehicle also carried a scanning sonar (Kongsberg
Mesotech), a CTD (Saiv SD204) and a manipulator (Hydrolek EH5). Underwater po-
sition was determined via the Ultra Short Baseline (USBL) system Posidonia (Ixsea)10

linked to the GPS system on-board R/V Polarstern. The USBL data (latitude, longitude
and depth) was imported into the ROV data processing software OFOP (Huetten and
Greinert, 2008) for real time display and recording of the vehicle position. All videos
were relayed to the surface control room and the HD stream was saved to Compact
Flash cards with a nanoFlash recorder (Convergent Design). The dive alternated be-15

tween short (10 min) line transects where the pilot kept the heading, speed and altitude
constant and periods where the vehicle remained immobile for sampling and small
scale observations.

2.1.3 Dive C

The third data set was recorded at station Errina2012 GD (51◦ 10.14′ S, 74◦ 56.171′ W)20

located in the steep-sloped Guadalupe Channel in Chilean Patagonia. The substrate
was composed of stony walls alternating with slides of finer sediment resulting in
a rough habitat topography marked by small scale variations in slope angle and ori-
entation down to 150 m. The ROV, a V8 Sii (Ocean Modules) customized for the Alfred
Wegener Institute, Germany, carried two HD (19 201 080 px, interlaced 60 fps, 50 Mbp)25

video cameras (Kongsberg oe14-502 ) one oriented horizontally and the other tilted 30◦

downward for navigation and data analysis. A wide angle camera (Bowtech L3C-550)
observed the rear to control the manipulator (Sub-Atlantic MK 1) and the tether. An
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echo-sounder (Tritech Micron) was mounted onto the tilted camera to measure its dis-
tance to the substrate (Karpov et al., 2006). Light was provided by five LEDs (Bowtech
LED-2400 aluminium): four in the front and one at the rear. An obstacle avoidance
sonar (Tritech Micron) facilitated the navigation and a DVL (RDI Explorer PA) orien-
tated in the same direction as the tilted camera was used for bottom tracking and5

current measurements. Depth was obtained from the inertial measurement unit (IMU)
and the CTD (SeaBird SBE19 plus). The USBL positioning system (Tritech MicroNav)
was linked to a differential GPS (Geneq SX Blue II) and the position of the vehicle
was plotted and recorded in the Seanet software (Tritech). Data from the DVL were
displayed and registered in WinRiver II (RDI). The HD video streams were captured by10

a nanoFlash recorder (Convergent Design). The strategy adopted on this site was to
exploit the ROV’s 360 degrees manoeuvrability and fly several short (estimated 15 m
from the DVL bottom track) horizontal transects at given depths by moving sideways,
thus keeping the tilted camera axis perpendicular to the channel’s wall. The pitch was
adapted to the slope and the speed, heading and distance to the substrate were kept15

as constant as possible. Nevertheless, navigation was difficult due to the rough habi-
tat topography and the presence of obstacles (stones, overhangs) on the trajectory
requiring careful adjustment of the vehicle.

2.2 Determination of subtransect length

Figure 1 gives an overview of the different steps necessary to obtain subtransect mea-20

surements from 3-D models, USBL underwater acoustic navigation and from DVL bot-
tom tracking.

2.2.1 PhotoModeler

To create 3-D models with PhotoModeler Scanner overlapping pictures along the tran-
sects and a scale are needed. Videos were trimmed to consistent sequences of sta-25

ble vehicle speed, heading, tilt and distance to the substrate with Freemake video
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converter. Free studio (DVDVideoSoft) was then used to extract every tenth frame for
dive A and B (Antarctic) and every twentieth frame for dive C (Chile, tilted camera). In
order to minimize the disturbances due to artificial lightning, the edges of the pictures
were cropped in XnView by up to 10 % vertically and horizontally. With these settings,
any feature was seen from at least 8 angles as recommended in previous studies using5

PhotoModeler or similar software (Bythell et al., 2001; Cocito et al., 2003; Green and
Gainsford, 2003; de Bruyn et al., 2009).

The frames obtained were imported into PhotoModeler Scanner and an automated
“SmartPoints project” was run. During this processing, the software first automatically
detects natural features in each picture and marks them as “SmartPoints” (Fig. 2).10

Based on its characteristics (position, shape, scale) each feature is then identified on
consecutive pictures and its displacements followed up. From these movements, a pro-
gramme routine reconstructs the relative position of the camera from which each pic-
ture was taken (Fig. 3). Finally, the relative 3-D position of each SmartPoint is solved,
resulting in a 3-D points cloud (Fig. 4).15

For each video sequence, the processing was first run on an initial group of 50 con-
secutive frames. If the modelling was successful, more frames were added in groups
of 10 and the model reprocessed until the software failed to construct a point cloud.
The last successful model was then considered as a subtransect and a new model
was started with the next 50 frames. For each subtransect, the time at which the first20

(tstart) and the last (tend) frames included in the model were recorded was listed and the
likelihood of the camera trajectory was checked in the corresponding video. Impossible
camera positions (i.e. lying in the ground or too far from the others) and obvious badly
positioned SmartPoints (i.e. deep in the sediment or floating far above the substrate)
were removed manually. After this cleaning procedure, the 3-D models were scaled25

to obtain the absolute distances in meters between any two 3-D SmartPoints. For the
Antarctic deployments (dive A and B) those frames (N ≥ 3 per subtransect) were se-
lected that showed the laser dots most clearly on a flat surface. The known distance
between the laser points was used to calibrate the distance between the two nearest
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3-D SmartPoints. For dive C in Chile, the distance between the camera and the central
point in the image, known from the echo-sounder, was entered as scaling reference
every 10 images (Fig. 5).

When several scaling references are entered for one model, PhotoModeler applies
an affine transformation to best fit all values and recalculates the dimensions of the5

references. A comparison between the dimensions estimated by PhotoModeler after
scaling and the known size of the references provides a measure of the scaling error,
expressed in percentage of the measured length. It includes both the 3-D SmartPoint
positioning error by PhotoModeler and the error made while measuring the scaling
references (laser points or echo-sounder).10

Finally the linear subtransect length (L3Dl) was measured by considering the straight
line between the central points in the first and last frames. The projected subtransect
length (L3Dp), was obtained by measuring segments linking the central points of frame
n and frame n+10, moving from the first to the last frame in the 3-D model and thus
following the substrate small scale topography (Fig. 6).15

2.2.2 USBL

The geographic position of the ROV obtained from the Posidonia USBL system was
imported into OFOP for processing. Erroneous locations were identified by eye and
removed. The track was then smoothed using a floating mean algorithm taking the
20 nearest neighbours into account and the spline function was used to rebuild the20

position for every second. The smoothed trajectory was plotted into the software Ar-
cGIS (ESRI) as a single polyline. Based on tstart and tend from the 3-D models, the
geographic position of the ROV at the beginning and at the end of each PhotoMod-
eler subtransect was identified and the smoothed USBL trajectory was extracted be-
tween those two positions. The extracted track was then projected to a metric system to25

compute the distance travelled during the subtransect (LUSBL). The Lambert Azimuthal
Equal Area projection centred on the site was used, an equivalent coordinate system
recommended for length measurements in the Antarctic Digital Database manual.
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2.2.3 DVL

A DVL acoustically tracks the velocity vector of a ROV relative to the substrate and
computes the distance travelled by the vehicle. The DVL data was extracted for each
subtransect from the WinRiver software (RDI) using the same time windows (tstart to
tend) for which 3-D models were created from the videos. As the time interval between5

two DVL measurements was 3.5 s, a simple linear interpolation was realized to com-
pute the data for every second and so calculate the distance travelled during each
subtransect (LDVL).

3 Results

3.1 Performances10

3.1.1 PhotoModeler

For dive A in the Antarctic with a Standard Definition camera, fifty-two subtransects
were successfully reconstructed in 3-D (Table 2) with a mean scaling error of 4.7 %.
The mean linear subtransect length (L3Dl) was 6.55 m from a total of 341 m modelled.
The projected subtransect length (L3Dp) was different from L3Dl in only nine cases15

where a slight relief was observed along the subtransect. In those nine subtransects
L3Dp was longer than L3Dl by a maximum of 3 %.

For dive B, located on the same site but with a High Definition camera, seventy-
one subtransects were modelled (Table 2) and the scaling error was not significantly
different from the one in dive A (Mann–Whitney Rank Sum Test, P = 0.662). The linear20

subtransect length (L3Dl) was, on average, 1.7 m longer than in dive A (Mann–Whitney
Rank Sum Test, P = 0.003) and the total length modelled almost twice as long. Twenty-
three subtransects presented a slight relief for which L3Dp was measured as being
longer than L3Dl by 3 % on average.
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Out of the sixty 3-D models created in Chile (dive C), only fifty-five could be scaled
(Table 2) with an average scaling error of 10 % of the length, more than twice as large as
for dive A and B. The scaling error was positively correlated with the standard deviation
of the distance to the substrate measured by the echo-sounder during the subtransects
(Pearson product moment correlation, correlation coefficient=0.305, P = 0.024). The5

reconstructed trajectories were in general shorter for those horizontal flights along the
wall than for the line transects in the Antarctic as modelling often failed when the ROV
was moving too abruptly or when the slope changed too quickly due to the rough
substrate. L3Dp was longer than L3Dl by 13 % in average for all but two subtransects
where they were equal.10

For one single subtransect, it took 1.5 to 6 h to pre-process the videos and go through
the various steps necessary to obtain lengths from 3-D models with PhotoModeler.

3.1.2 USBL

The Posidonia underwater positioning system yielded erratic results (Fig. 7), with con-
secutive positions sometimes up to 170 m apart. Removal of outliers and spline fit-15

ting the data allowed reasonable reconstructions of the vehicle”s track. The mean dis-
tances between the OFOP smoothed trajectory and the raw Posidonia positions was
3.74±13.91 m. The seventy-one USBL subtransects corresponding to the 3-D models
had an average length (LUSBL) of 6.45±2.79 m and a total length of 458 m.

For a complete dive, the time needed to compute the length of all subtransects was20

about 1.5 h.

3.1.3 DVL

One third of the subtransects modelled in 3-D could not be measured by bottom track-
ing because of missing data resulting from a too close range of the ROV (<1.2 m) or
off-angle relative to the slope. Only measurements with less than 20 % missing pings25
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were included in the comparison, representing a number of thirty-seven subtransects
with an average length (LDVL) of 3.48±1.72 m and a total length of 129 m.

The computation time for one subtransect length required between 11 and 37 min.

3.2 Comparison

3.2.1 3-D versus acoustic positionning5

For dive B, LUSBL was significantly different from L3Dl (paired t-test, P < 0.001). The lin-
ear subtransect length from PhotoModeler resulted in distances in average 20±22 %
longer than the acoustic navigation data. The methods agreement assessment strat-
egy of Bland and Altman (1986) was applied by plotting the difference between the
lengths obtained from 3-D modelling and acoustic positioning (L3Dl −LUSBL) against10

the average between both methods ((L3Dl +LUSBL) / 2) (Fig. 8). Despite large scatter,
the difference tended to increase with increasing subtransect length (Pearson product
moment correlation, correlation coefficient=0.292, P = 0.013). Conducting the same
tests with L3Dp produced similar results.

3.2.2 3-D versus bottom tracking15

No significant difference was detected between LDVL and L3Dl (paired t-test, P = 0.982)
but the test presented low power (0.05). As seen from Fig. 9, PhotoModeler linear sub-
transect lengths appeared comparable to DVL measurements with a mean difference
around zero, yet showing a high scatter (standard deviation for LDVL−L3Dl was ±22 %).

The comparison of L3Dp and LDVL identified a significant difference between the pro-20

jected subtransect lengths in PhotoModeler and the DVL distances (Wilcoxon Signed
Rank Test, P < 0.001). As shown in Fig. 10, L3Dp was clearly longer than LDVL (mean
difference=14.85±20.84 % of length) and the difference increased slightly with in-
creasing distance (Pearson product moment correlation, correlation coefficient=0.435,
P = 0.007).25
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4 Discussion

4.1 Performances

4.1.1 PhotoModeler

The surface of the substrate was successfully modelled for several video sequences of
all three ROV dives with PhotoModeler Scanner. It was thus shown that the method of5

3-D subtransect reconstruction aiming at distance measurements is applicable for both
vertical and oblique camera orientations. As the scaling error for the models was not
significantly different between dive A and B in the Antarctic and represented less than
5 % of the length, it seems that neither the video quality (Standard or High Definition)
nor the length of the scaling references biased the accuracy of the 3-D models. Com-10

parable quantitative data from dive A and B could be computed from PhotoModeler
data as the surface of the subtransects was assessed using the same method. This
was not possible with traditional methods of survey area determination as navigation
was missing for dive A. For those two deployments, lasers placed respectively 20 and
5 cm apart were projected on a relatively flat bottom so that the scale remained mostly15

unaltered and constantly visible directly in the frames integrated into the model. The
difference in the subtransect lengths between dives A and B can be explained by the
higher altitude and speed with which the ROV was flown during dive A. These condi-
tions increased the difficulty for PhotoModeler to follow up features displacement. In
Chile (dive C), the use of the echo-sounder as a scaling reference in a rough stony20

habitat yielded a scaling error twice as large as for dive A and B. This instrument can
be disturbed by the presence of objects positioned at various distances in its field of
view. Moreover, its data are recorded independently of the videos, which often leads to
difficulties with time synchronization (Pinkard et al., 2005; Tissot, 2008). The positive
correlation between the scaling error and the variability of the distance to the substrate25

(mainly due to the topography) suggests that the scaling was subjected to measure-
ment inaccuracies. Lasers would not have performed better than the echo-sounder
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as they are often not visible in rough habitats and their projection becomes distorted
(Karpov et al., 2006). Furthermore, piloting was influenced by the topography, leading
to shorter subtransects modelled in Chile due to abrupt camera movements. Overall,
the accuracy of the models presented in this study was acceptable and comparable
to results obtained from perspective grids (Smith and Hamilton, 1983; Kocak et al.,5

2004). The distortion of the reference scales due to substrate roughness in Chile was
identified as the main source of imprecision.

The performance of PhotoModeler for subtransect length measurements was tested.
In a similar manner, the width could be determined from the 3-D models. After export
of the point cloud to computer-aided design software even the area of the entire sub-10

transect or of given surfaces could be directly computed (Bythell et al., 2001). In this
study, modelling was realized with frames extracted from videos but the software is
also able to work with overlapping still pictures (Bythell et al., 2001; Green et al., 2002;
de Bruyn et al., 2009). The processing requires identifiable features on the images and
the sandy/rocky habitats in the Antarctic and Chile offered several such features. In15

contrast, the modelling of muddy substrate could be more difficult due to featureless or
smooth surfaces (Green and Gainsford, 2003). Calibrating the camera could improve
the accuracy of the data ciphered from 3-D models (Ewins and Pilgrim, 1997; Bythell
et al., 2001; Cocito et al., 2003; Green and Gainsford, 2003). However calibration re-
quires direct access to the camera, is usually performed in shallow water and can be20

affected by depth (Shortis et al., 2008). Reference targets of known size could also fa-
cilitate scaling (Green et al., 2002), especially in complex habitat structures where laser
projections are distorted and echo-sounders disturbed by the topography. Nonetheless
the deployment of objects along a transect is a long and difficult task in deep envi-
ronments where sledges and ROVs are usually set. Deploying stereo cameras could25

also be a solution as the distance between both cameras could be used as scaling
reference (Shortis et al., 2008; Althaus et al., 2009; Beall et al., 2010).
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4.1.2 USBL

The Posidonia USBL system used during dive B revealed a positioning accuracy far
worse than the 0.3 % of distance expected from the instrument specification (60 cm
on a 200 m deep site). Underwater acoustic devices can be affected either by signal
disturbances or sound velocity (Gamroth et al., 2011). Therefore, we assume that the5

system was disturbed by stratification (halocline), the presence of ice crystals in the
water and a rather low sound velocity of about 1440 ms−1. Compared to distances
between bathymetric features known from charts USBL navigation revealed more ac-
curacy in shallow water (< 30 m) (Karpov et al., 2006) but yielded similar instabilities in
deeper water (> 600 m) (Althaus et al., 2009). Moreover, in Chile, the Micronav USBL10

system almost completely failed to record the ROV position in a steep channel setting
with vertical walls which act both as reflective surfaces and obstacles for the acoustic
signal. Distance measurements from underwater trajectories can become more ac-
curate by increasing the length of the subtransect (Barry and Baxter, 1993; Karpov
et al., 2006). However video transects cannot always be exploited in their entire length15

due to bad quality sequences. New technologies couple USBL data with DVL speed
measurements for better navigation (Kinsey and Whitcomb, 2004; Kocak et al., 2004;
Dolan et al., 2008). Likewise, long baseline can be employed for precise positioning
(Parry et al., 2003) although it implies the deployment of an additional system on the
site (Pilgrim et al., 2000).20

4.1.3 DVL

A considerable amount of data from the DVL was not usable, probably because the
ROV flew too close to the substrate (Pinkard et al., 2005). Nonetheless it has been
proven that DVL bottom tracking can be as accurate as GPS positioning for a ship
(Snyder, 2010) and more precise than USBL for a ROV (Pinkard et al., 2005). The25

performance of the DVL could be improved by coupling it to the attitude sensor of
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the ROV (Kinsey et al., 2006; Snyder, 2010). In this study, these inaccuracies were
minimized by keeping the heading, tilt and roll as constant as possible.

4.2 Comparison

While using underwater acoustic navigation data to calculate the distance travelled,
even with an appropriate coordinate system, the trajectory is usually projected on a flat5

surface unless a bathymetric model is integrated. This explains why the distances ci-
phered from USBL positioning were shorter than those computed from 3-D models
(Barry and Baxter, 1993). Moreover, positioning inaccuracies in Posidonia and post-
processing in OFOP influenced the USBL subtransect lengths as the smoothing and
splining of the trajectory erased small scale movements and short time speed varia-10

tions.
Bottom tracking with a DVL determines the distance travelled over ground. Hence

such data were comparable to the linear subtransect length obtained with PhotoMod-
eler in Chile. However these results must be considered carefully, due to the low power
of the test. The high variability of the difference values between both methods suggests15

an underlying mismatch probably due to the weaknesses of the DVL data.
Substrate relief and roughness cannot be ignored, since they have an ecological

significance (e.g. Wilson et al., 2007; Gratwicke and Speight, 2005) but they lead to
more challenging analysis. PhotoModeler allows the user to take the small scale to-
pography into consideration, for instance by measuring a projected subtransect length.20

This measure was, as expected, longer than the linear subtransect length and the DVL
bottom track every time the bottom presented some relief or 3-D structure. However,
the precision used for the projection must be standardized as the subtransect length
could be extended up to infinity by increasing the resolution (Mandelbrot, 1967). The
main advantage of 3-D modelling is that measurements can be performed on the ac-25

tual substrate topography (Shortis et al., 2008) taking the slope and small scale relief
into account and related directly to objects and surfaces visible in the videos. Used in
combination with an endoscopic camera (Wunsch and Richter, 1998), PhotoModeler
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could allow the mapping of cryptic habitats such as cracks and crevices in coral reefs
(Richter et al., 2001).

For the estimation of substrate area needed for density studies, 3-D modelling seems
much more suitable than DVL and USBL data, especially in high relief habitats. Never-
theless the processing in PhotoModeler is extremely time consuming (see also Cocito5

et al., 2003). In contrast, distance measurements from navigation systems have the ad-
vantage of being quickly performed and DVL bottom tracking directly provides distance
data.

In terms of data representation, trajectories from underwater positioning system can
be directly mapped, which is an advantage. The movements over ground recorded by10

a DVL are displayed in real time, allowing distance measurements during the deploy-
ment. 3-D models give an insight into the structure of the substrate, a significant eco-
logical factor. Besides, PhotoModeler offers an option for geo-referencing and export
to other software for further processing.

4.3 Conclusion15

In summary, 3-D modelling is a solution to compare quantitative data extracted from
several underwater video transects. Applicable on a variety of setups, it is an alterna-
tive to compute subtransect dimensions when more traditional methods such as image
scaling, underwater acoustic positioning or DVL bottom tracking fail due to unsuitable
camera setups, unavailability of instruments, inaccurate measurements and difficult en-20

vironmental conditions such as high relief. One of the main advantages of 3-D recon-
struction is that it relates directly to the surfaces and objects seen in the images. In the
case of rough substrates, it is the first step to accurately measure areas considering the
actual topography. Nevertheless, scaling the model is a sensitive issue, especially in
habitats showing high structural complexity, and the accuracy of the measurements will25

greatly depend upon it. At the present time, the disadvantage of 3-D processing in Pho-
toModeler is the decidedly time consuming procedure. Whether or not 3-D modelling
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should be used depends on the other methods applicable for determining the surface
surveyed, the topography of the site, and on the goal and scale of the study.
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Table 1. Main parameters of the sites and setups for the 3 ROV dives.

Dive Site Substrate Camera Camera Scaling Other length
topography definition orientation reference measurements

A Antarctic Smooth Standard Oblique Lasers 20 cm None
B Antarctic Smooth High Oblique Lasers 5 cm USBL
C Chile Rough High Perpendicular Altimeter DVL

to substrate
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Table 2. Subransects lengths computed from the 3-D models for the three dives.

Dive Number of Calibration Type of Total Mean
subtransects error [%] length length [m] length [m]

A 52 4.7±3.4 L3Dl 341 6.55±3.80
L3Dp 342 6.58±3.83

B 71 4.7±2.8 L3Dl 586 8.25±3.29
L3Dp 593 8.35±3.40

C 55 10±6 L3Dl 182 3.31±1.58
L3Dp 213 3.87±1.93
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Fig. 1. Workflow for the determination of subtransect length through 3-D modelling, USBL nav-
igation and DVL bottom tracking.
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Fig. 2. SmartPoints (green dots) in PhotoModeler: automatic detection of natural features in
a sample frame extracted from dive B.
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Fig. 3. SmartPoints matching and camera position reconstruction in PhotoModeler. (A1–4)
Position of 4 SmartPoints identifying the same features on 4 consecutive frames. (B) Displace-
ments of the 4 SmartPoints along the frames. (C) Reconstructed relative positions of the cam-
era for the 4 previous frames within the subtransect.
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Fig. 4. 3-D SmartPoints cloud: the sponges visible in Figs. 2 and 3 are outlined. The same
points are marked as in Fig. 3 and the relative orientation of the camera position A1 is shown
in red. (A) View from the same angle as from camera position A1. (B) View from the same
direction as camera position A1 but at bottom level. (C) View from the left side of camera
position A1 at bottom level.
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Fig. 5. Scaling of the 3-D models (A). Dive A and B (Antarctic): the distance between the laser
points (5 cm, red line) is used to calculate the distance between the two nearest SmartPoints
(4.6 cm, black line). (B) Dive C (Chile): the distance (1.9 m, black line) measured by the echo-
sounder between the camera and the central point (red dot) in the first frame (not represented
here) is employed as scaling reference for the 3-D model (green dots, grey lines for perspec-
tive).
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Fig. 6. 3-D models and subtransect length. (A) Example of a reconstructed ROV subtransect in
the Antarctic seen in lateral view. (B) Example of a reconstructed ROV subtransect in Chile
displayed in top-front view and showing the complex topography. (1) 3-D points cloud and
camera positions. (2) 3-D points cloud, linear subtransect length (L3Dl, red line) and projected
subtransect length (L3Dp, blue segments).
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Fig. 7. (A) Overview showing the extent (red rectangle) of (B) high resolution detail of the
ROV track during dive B (projection Lambert Azimuthal Equal Area) highlighting the distance
between the raw ROV positions from Posidonia and the OFOP smoothed trajectory.
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Fig. 8. Bland and Altman plot of difference against mean for the subtransect lengths measured
from 3-D models (L3Dl) and from underwater navigation (LUSBL).
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Fig. 9. Bland and Altman plot of difference against mean for the subtransect length measured
from bottom tracking (LDVL) and the linear subtransect length in PhotoModeler (L3Dl).
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Fig. 10. Bland and Altman plot of difference against mean for the projected subtransect length
in PhotoModeler (L3Dp) and the subtransect length measured from bottom tracking (LDVL).
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